History of Artificial Intelligence

Compiled by Dana Nejedlová in October 2003

When we look to the past, we can see that people have always been striving to ease their living by making machines that should perform tasks demanding strength, rapidity, or dull repetition. In the beginning it involved only physical tasks, but later people needed some help with the tasks that so far had to be solved only mentally. You surely know that a typical task like this is computing large numbers. By now it is evident that it is possible to construct machines named computers that can compute large numbers far much faster than most of people can do. But people had more ambitions than compute large numbers. They wanted to construct an artificial man that would behave like a genuine man. And it has shown that this task is extremely difficult. From what I have already said you can deduce that artificial intelligence or AI is connected with computers and the wish of people to construct artificial men or robots. But what this curious wish of people to make beings like them, in other ways than ordinary and easy breeding, originates from? I think that it stems from the curiosity of the people about how they are constructed. What makes them feel the feelings?

All this effort of creating other intelligent beings, than biological, needs some theoretical background. This background has been built since antiquity. One necessary thing for this was logic. The field of logic has been initiated by Aristotle (384 – 322 BC) with his method of deductive reasoning characterised by the syllogism. A syllogism is a form of reasoning in which two statements are made and a logical conclusion is drawn from them. For example, Socrates is a man, all men are mortal therefore Socrates is a mortal.

In the 17th century materialist philosophy flourished in Europe. French philosopher Rene Descartes (1596 – 1650) proposed that bodies of animals are nothing more than complex machines. British philosopher Thomas Hobbes (1588 – 1679) in his book Leviathan (1651) came to the idea that any intelligent entity must have a body and that this body needed not to be all in one piece but could be spread all over the place, and that reasoning or mind could be reduced to computation. So, the body of some artificial intelligence must be material and it must be able to compute.

The scientific field of artificial intelligence could not go any further until computers were constructed. The first computers have been envisaged in the 17th century by Gottfried Wilhelm von Leibniz (1646 – 1716) and built in the 18th century by Charles Babbage (1792 – 1871). The pace of computer building has been accelerated by the Second World War. Since 1940 the computer construction has not been a mere theoretical affection but it is a part of activities that bring strategic advantage to the most developed countries.

The ideas of creating an artificial formal language patterned on mathematical notation in order to classify logical relationships, and of reducing logical inference to a purely formal and mechanical process, were due to Leibniz. Leibniz’s own mathematical logic, however, was severely defective, and he is better remembered simply for introducing these ideas as goals to be attained than for his attempts at realising them.

Although philosophy provided the initial ideas for artificial intelligence, it took mathematics to turn these ideas into a formal science. In 1847, British mathematician and logician George Boole (1815 – 1864) developed a mathematical theory of binary logic and arithmetic known as Boolean algebra. Boolean algebra is a two-valued, or binary, algebra, in which a proposition can have the value yes or no, true or false, 1 or 0; there are no intermediate values. Boolean logic and its derivatives provided a formal language that allowed mathematicians and philosophers to explicitly describe the logic proposed by Aristotle in a precise and unambiguous way.

The information processing in contemporary computers employs the binary principles of boolean algebra developed by George Boole. The people who were designing computers in the 1940s and 1950s, especially American born in Hungary John Louis von Neumann (1903 – 1957) and British scientist Alan Mathison Turing (1912 – 1954), were both interested in the principles of artificial intelligence.

While John von Neumann is known for determining the architecture of computer hardware, Alan Turing has created the concept of the algorithm to digital computers. Turing has done this by conceiving an abstract representation of a computing device, which is known today as the “Turing machine” published in the Church-Turing Thesis in 1936. The Turing machine consists of a reading and writing head that scans a (possibly infinite) two-dimensional tape divided into squares, each of which is inscribed with a 0 or 1. Computation begins with the machine, in a given “state”, scanning a square. It erases what it finds there, prints a 0 or 1, moves to an adjacent square, and goes into a new state. This behaviour is completely determined by three parameters: (1) the state the machine is in, (2) the number on the square it is scanning, and (3) a table of instructions. The table of instructions specifies, for each state and binary input, what the machine should write, which direction it should move in, and which state it should go into. (E.g., “If in State 1 scanning a 0: print 1, move left, and go into State 3”.) The table can list only finitely many states, each of which becomes implicitly defined by the role it plays in the table of instructions. These states are often referred to as the “functional states” of the machine. Computer scientists and logicians have shown that the Turing machines – given enough time and tape – can compute any function that any conventional digital computers can compute. The Turing Machine that he envisioned is essentially the same as today’s multi-purpose computers. The concept of the Turing machine was revolutionary for the time. Most computers in the 1950s were designed for a particular purpose or a limited range of purposes. What Turing envisioned was a machine that could do anything, something that we take for granted today. The method of instructing the computer was very important in Turing’s concept. He essentially described a machine, which knew a few simple instructions. Making the computer perform a particular task was simply a matter of breaking the job down into a series of these simple instructions. This is identical to the process programmers go through today. He believed that an algorithm could be developed for most any problem. The hard part was determining what the simple steps were and how to break down the larger problems.

Alan Turing is considered to be one of the fathers of artificial intelligence. In 1950 he wrote a paper describing what is now known as the “Turing Test”. The test consisted of a person asking questions via keyboard to both a person and an intelligent machine. He believed that if the person could not tell the machine apart from the person after a reasonable amount of time, the machine was somewhat intelligent. The Turing test can be used to provide a possible definition of intelligence. This test can be of various difficulty ranging from a talk about some limited subject to solving common sense problems, which are the most difficult for machines, because they require to input facts about vast quantity of everyday objects into the machines. In 1990 Hugh Gene Loebner agreed with The Cambridge Center for Behavioral Studies to underwrite a contest designed to implement the Turing Test. Dr. Loebner pledged a Grand Prize of $100,000 and a Gold Medal for the first computer whose responses were indistinguishable from a human's. Each year an annual prize of $2000 and a bronze medal are awarded to the most human computer. The winner of the annual contest is the best entry relative to other entries that year, irrespective of how good it is in an absolute sense.

Although the computer provided the technology necessary for artificial intelligence, it was not until the early 1950s that the link between human intelligence and machines was really observed. Norbert Wiener (1894 – 1964) was one of the first Americans to make observations on the principle of feedback theory. The most familiar example of feedback theory is the thermostat: It controls the temperature of an environment by gathering the actual temperature of the house, comparing it to the desired temperature, and responding by turning the heat up or down. What was so important about his research into feedback loops was that Wiener theorised that all intelligent behaviour was the result of feedback mechanisms. Mechanisms, that could possibly be simulated by machines. This discovery influenced much of the early development of artificial intelligence.

Since Turing, there have been two kinds of approach to the human mind. The first approach was that it is basically a digital computer. The second approach was that it is not. The first approach, also called Good Old-fashioned Artificial Intelligence or symbolic artificial intelligence, was the dominant approach in artificial intelligence through the mid-80s. On this view, the mind just is a computer, which manipulates symbols, and these symbols can be regarded as thinking. The second approach was called New-fangled Artificial Intelligence, and the most prominent branch of it has been connectionism. Good Old-fashioned Artificial Intelligence assumes that an intelligent machine represents the world somehow in its memory and is able to operate on this representation to achieve its goals. Symbolic AI tries to reconstruct the human intelligence from top to bottom by reducing the intellectual abilities so that they could be proper to machines. New-fangled Artificial Intelligence goes from bottom to top, from the simplest reactions to the more complex behaviour of machines that is supposed to emerge.

In 1943 Warren McCulloch and Walter Pitts published their paper dealing with what are generally regarded as the first neural networks. These researchers recognised that combining many simple neurons into neural systems was the source of increased computational power. The weights on a McCulloch-Pitts neuron are set so that the neuron performs a particular simple logic function. The neurons can be arranged into a net to produce any output that can be represented as a combination of logic functions. They were hard-wired logic devices, which proved that networks of simple neuron-like elements could compute. Because they were hard-wired, they did not have the mechanisms for learning, and so they were extremely limited in modelling the functions of the more flexible and adaptive human nervous system. Solving tasks via neural networks is also called connectionism. Connectionism is a movement in cognitive science, which hopes to explain human intellectual abilities using artificial neural networks. Connectionist networks get their name from the fact that they consist of multiply connected units that interact among themselves. Obviously these systems are modelled on the biological nervous system. The interdisciplinary field of cognitive science brings together computer models from AI and experimental techniques from psychology to try to construct precise and testable theories of the workings of the human mind.

In 1949 Donald Olding Hebb, a psychologist at McGill University in Canada, designed the first learning law for artificial neural networks. His premise was that if two neurons were active simultaneously, then the strength of the connection between them should be increased.

In 1951 two graduate students in the Princeton mathematics department Marvin Minsky and Dean Edmonds built the SNARC for Stochastic Neural-Analog Reinforcement Computer, the first neural network computer. It was a randomly wired neural network learning machine consisting of 40 neurons based on the reinforcement of simulated synaptic transmission coefficients. Marvin Minsky, who is one of the most prominent figures in artificial intelligence, has made many contributions to artificial intelligence, cognitive psychology, mathematics, computational linguistics, robotics, and optics.

In late 1955, Allen Newell, Herbert A. Simon, R. Solomonoff, and J. C. Shaw from Carnegie Institute of Technology, now Carnegie Mellon University (CMU), developed The Logic Theory Machine, also called the Logic Theorist, considered by many to be the first artificial intelligence program. The program was basically a decision tree system for finding proofs for mathematical theorems. The impact that the Logic Theorist made on both the public and the field of artificial intelligence has made it a crucial stepping stone in developing the artificial intelligence field.

In 1956 John McCarthy from Princeton regarded as the father of artificial intelligence, organised a conference to draw the talent and expertise of others interested in machine intelligence for 2-month workshop. The other participants were Marvin Minsky from Harvard, Nathaniel Rochester from IBM, Claude Shannon from Bell Telephon Laboratories, Trenchard Moore from Princeton, Arthur Samuel from IBM, Oliver Selfridge and Ray Solomonoff from MIT, Allen Newell and Herbert Simon from Carnegie Tech. John McCarthy invited them to Vermont for “The Dartmouth summer research project on artificial intelligence”. From that point on, because of McCarthy, the field would be known as Artificial Intelligence. Although not a huge success, the Dartmouth conference did bring together the founders in artificial intelligence, and served to lay the groundwork for the future of artificial intelligence research. In the seven years after the conference, artificial intelligence began to pick up momentum. Although the field was still undefined, ideas formed at the conference were re-examined, and built upon. Centres for artificial intelligence research began forming at Carnegie Mellon, MIT, Stanford, and IBM, and new challenges were faced: further research was placed upon creating systems that could efficiently solve problems, by limiting the search, such as the Logic Theorist. And second, making systems that could learn by themselves.

The early years of AI were full of successes – in a limited way. Given the primitive computers and programming tools of the time, and the fact that only a few years earlier computers were seen as things that could do arithmetic and no more, it was astonishing whenever a computer did anything remotely clever. From the beginning, AI researchers were not shy in making predictions of their coming successes. In 1958 Herbert Simon predicted that within 10 years a computer would be chess champion, and an important new mathematical theorem would be proved by machine. Claims such as these turned out to be wildly optimistic. The barrier that faced almost all AI research projects was that methods that sufficed for demonstrations on one or two simple examples turned out to fail miserably when tried out on wider selections of problems and on more difficult problems.

Mathematicians like David Hilbert (1862 – 1943) and Kurt Gödel (1906 – 1978) have shown that there are some functions on the integers that cannot be represented by an algorithm – that is, they cannot be computed. This motivated Alan Turing to try to characterise exactly which functions are capable of being computed. This notion is actually slightly problematic, because the notion of a computation or effective procedure really cannot be given a formal definition. However, the Church-Turing thesis, which states that the Turing machine is capable of computing any computable function, is generally accepted as providing a sufficient definition. Turing also showed that there were some functions that no Turing machine can compute. For example, no machine can tell in general whether a given program will return an answer on a given input, or run forever. This is so called halting problem.

Gödel is best known for his proof of "Gödel's Incompleteness Theorems". In 1931 he published these results in Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. He proved fundamental results about axiomatic systems, showing in any axiomatic mathematical system that is capable of expressing general arithmetic (equality, addition and multiplication of natural numbers) there are propositions that cannot be proved or disproved within the axioms of the system. In particular the consistency of the axioms cannot be proved. This ended a hundred years of attempts to establish axioms which would put the whole of mathematics on an axiomatic basis. One major attempt had been by Bertrand Russell with Principia Mathematica (1910-1913). Another was Hilbert's formalism which was dealt a severe blow by Gödel's results. The theorem did not destroy the fundamental idea of formalism, but it did demonstrate that any system would have to be more comprehensive than that envisaged by Hilbert. Gödel's results were a landmark in 20th-century mathematics, showing that mathematics is not a finished object, as had been believed. It also implies that a computer can never be programmed to answer all mathematical questions.

Although undecidability and noncomputability are important to an understanding of computation, the notion of intractability has had a much greater impact. Roughly speaking, a class of problems is called intractable if the time required to solve instances of the class grows at least exponentially with the size of the instances. The distinction between polynomial and exponential growth in complexity was first emphasised in the mid-1960s (Cobham, 1964; Edmonds, 1965). It is important because exponential growth means that even moderate-sized instances cannot be solved in any reasonable time. Therefore, one should strive to divide the overall problem of generating intelligent behaviour into tractable subproblems rather than intractable ones. The second important concept in the theory of complexity is reduction, which also emerged in the 1960s (Dantzig, 1960; Edmonds, 1962). A reduction is a general transformation from one class of problems to another, such that solutions to the first class can be found by reducing them to problems of the second class and solving the latter problems. How can one recognise an intractable problem? The theory of NP-completeness, pioneered by Steven Cook (1971) and Richard Karp (1972), provides a method. The concept of NP-completeness was invented by Cook, and the modern method for establishing a reduction from one problem to another is due to Karp. Cook and Karp have both won the Turing award, the highest honour in computer science, for their work. Cook and Karp showed the existence of large classes of canonical combinatorial search and reasoning problems that are NP-complete. Any problem class to which an NP-complete problem class can be reduced is likely to be intractable. These results contrast sharply with the “Electronic Super-Brain” enthusiasm accompanying the advent of computers. Despite the ever-increasing speed of computers, subtlety and careful use of resources will characterise intelligent systems. Put crudely, the world is an extremely large problem instance! Before the theory of NP-completeness was developed, it was widely thought that “scaling up” to larger problems was simply a matter of faster hardware and larger memories. The optimism that accompanied the development of resolution theorem proving, for example, was soon dampened when researchers failed to prove theorems involving more than a few dozen facts. The fact that a program can find a solution in principle does not mean that the program contains any of the mechanisms needed to find it in practice.

The field of complexity analysis analyses problems rather than algorithms. The first gross division is between problems that can be solved in polynomial time and those that cannot be solved in polynomial time, no matter what algorithm is used. The class of polynomial problems is called P. These are sometimes called “easy” problems, because the class contains those problems with running times like O(log n) and O(n). But it also contains those with O(n1000), so the name “easy” should not be taken literally. Another important class of problems is NP, the class of nondeterministic polynomial problems. A problem is in this class if there is some algorithm that can guess a solution and then verify whether or not the guess is correct in polynomial time. The idea is that if you either have an exponentially large number of processors so that you can try all the guesses at once, or you are very lucky and always guess right the first time, then the NP problems become P problems. One of the big open questions in computer science is whether the class NP is equivalent to the class P when one does not have the luxury of an infinite number of processors or omniscient guessing. Most computer scientists are convinced that P ≠ NP, that NP problems are inherently hard and only have exponential time algorithms. But this has never been proven. Those who are interested in deciding if P = NP look at a subclass of NP called the NP-complete problems. The word complete is used here in the sense of “most extreme”, and thus refers to the hardest problems in the class NP. It has been proven that either all the NP-complete problems are in P or none of them is. This makes the class theoretically interesting, but the class is also of practical interest because many important problems are known to be NP-complete. An example is the satisfiability problem: given a logical expression, is there an assignment of truth values to the variables of the expression that make it true?

In 1957 Frank Rosenblatt at the Cornell Aeronautical Laboratory invented the Perceptron in an attempt to understand human memory, learning, and cognitive processes. On the 23rd of June 1960, he demonstrated the Mark I Perceptron, the first machine that could “learn” to recognise and identify optical patterns. Rosenblatt’s work was a progression from the biological neural studies of noted neural researchers such as Donald Hebb and the works of Warren McCulloch and Walter Pitts that I have already mentioned. The most typical perceptron consisted of an input layer of neurons analogical to the retina in the eye connected by paths with the output layer of neurons. The weights on the connection paths were adjustable. The perceptron learning rule uses an iterative weight adjustment that is more powerful than the Hebb rule.

In 1957, the first version of a new program The General Problem Solver (GPS) was tested. The program was developed by the same team, which developed the Logic Theorist. The GPS was an extension of Wiener’s feedback principle, and was capable of solving a greater extent of common sense problems. Unlike the Logic Theorist, this program was designed from the start to imitate human problem-solving protocols. Within the limited class of puzzles it could handle, it turned out that the order in which the program considered subgoals and possible actions was similar to the way humans approached the same problems. Thus, GPS was probably the first program to embody the “thinking humanly” approach.

In 1960 Bernard Widrow and his student Marcian Ted Hoff developed a learning rule, which usually either bears their names, or is designated the least mean squares or delta rule, that is closely related to the perceptron learning rule. The similarity of models developed in psychology by Rosenblatt to those developed in electrical engineering by Widrow and Hoff is evidence of the interdisciplinary nature of neural networks. The Widrow-Hoff learning rule for a two-layer network is a precursor of the backpropagation rule for multilayer nets. Work of Widrow and his students is sometimes reported as ADAptive LINEar Systems or neurons or ADALINES. In 1962 their work was extended to MADALINES as multilayer versions of ADALINES.

While more programs were being produced, McCarthy, who has moved from Dartmouth to MIT, was busy developing a major breakthrough in artificial intelligence history. In 1958 McCarthy announced his new development, the LISP language, which is still used today, especially in the USA. LISP stands for LISt Processing, and was soon adopted as the language of choice among most artificial intelligence developers. Later special “LISP processors” and computers were developed to speed up processing, for example SYMBOLICS 36XX (Symbolics Inc.), XEROX 11XX (Xerox Company), and EXPLORER (Texas Instruments).

A couple of years after the GPS, IBM contracted a team to research artificial intelligence. Herbert Gelernter spent 3 years working on a program for solving geometry theorems called the Geometry Theorem Prover completed in 1959. Like the Logic Theorist, it proved theorems using explicitly represented axioms.

In 1959, Minsky along with John McCarthy founded the Artificial Intelligence Laboratory at MIT. It was here that the first theories of artificial intelligence were formulated and applied. Work at MIT in the mid-to-late 1960s focused on getting computers to manipulate blocks, which meant they had to understand three-dimensional geometry and certain aspects of physics. And they had to be able to see. The problem of how to make a computer not only see, through video cameras, but more importantly and problematically how to make it makes sense of what it sees, was tackled by a variety of researchers at MIT including Larry Roberts, Gerald Sussman, Adolfo Guzman, Max Clowes and David Huffman, David Waltz, Patrick Winston, and Berthold Horn. The end result of their efforts was “micro-blocks world”, where a robot was able to see the set of blocks on the table and move and stack them. Minsky supervised a series of students who chose limited problems that appeared to require intelligence to solve. These limited domains became known as microwords. The most famous microworld was the blocks world, which consists of a set of solid blocks placed on a tabletop. A task in this world is to rearrange the blocks in a certain way, using a robot hand that can pick up one block at a time.

In 1963 John McCarthy founded the Artificial Intelligence Laboratory at Stanford University.

In 1963 Marvin Minsky’s student James Slagle wrote SAINT (Symbolic Automatic INTegrator) that worked like the Logic Theorist but upon problems of algebra rather than logic. This is a tricky domain because, unlike simple arithmetic, to solve a calculus problem – and in particular to perform integration – you have to be smart about which integration technique should be used: integration by partial fractions, integration by parts, and so on.
In 1965 John Alan Robinson formulated a general method of automatic deduction of sentences in predicate calculus based on so-called resolution principle. In the same year Dr. Lotfi A. Zadeh of the University of California at Berkeley developed fuzzy logic. The importance of fuzzy logic derives from the fact that most modes of human reasoning and especially common sense reasoning are approximate in nature. Fuzzy logic, like it sounds, is a technique of applying logic to “fuzzy” or imprecise data and complex situations. In classical logic, the statement is either true or false. In fuzzy logic the statement is true by some probability. In fuzzy logic everything is a matter of degree. Knowledge is interpreted as a collection of elastic or, equivalently, fuzzy constraint on a collection of variables, and inference, which is the deriving of a conclusion, is viewed as a process of propagation of elastic constraints. For decades fuzzy logic has been massively applied to industry in Japan, which has probably enabled this country to get over USA in many industrial branches.

Marvin Minsky’s student Daniel Bobrow from MIT produced STUDENT in 1967, which could solve algebra story problems.

In 1968 Marvin Minsky’s student Tom Evans from MIT created program ANALOGY that had excellent results on automated analogies like figure A is to figure B as figure C is to figure D.

Bertram Raphael from MIT wrote SIR (Semantic Information Retrieval) in 1968 that was able to accept input statements in a very restricted subset of English and answer questions thereon.

Joseph Weizenbaum from MIT created the natural language processing machine ELIZA in 1967. It was more or less an intellectual exercise to show that natural language processing could be done. ELIZA is an automated psychoanalysis program based on the psychoanalytic principle of repeating what the patient says and drawing introspection out of the patient without adding content from the analyst. It actually just borrowed and manipulated sentences typed into it by a human. Weizenbaum believed a computer program shouldn’t be used as a substitute for a human interpersonal respect, understanding, and love. He rejected its use on ethical grounds. “ELIZA - a computer program for the study of natural language communication between man and machine” is a name of the book that Weizenbaum has written about it in 1966.

In 1968 Carol Engleman, William Martin, and Joel Moses of MIT developed a large interactive mathematics expert system called MACSYMA, which could manipulate mathematical expressions symbolically. The project entailed 100 person-years of software design and LISP programming. It is the most powerful system yet developed to solve algebraic problems on a computer. The user enters formulas and commands, which the system converts into solutions to extremely complex symbolic problems.

In 1969 Ross Quillian proposed a model for semantic knowledge in the form of a computer program called TLC – Teachable Language Comprehender. Quillian’s goal was to explore the way that knowledge about the meaning of words and concepts could be stored in a computer program that represented an artificial intelligence model for language comprehension.

Work similar to the blocks world at Stanford University eventually led to a robot that could construct an automobile water pump from randomly scattered parts, and then in 1969 to “SHAKEY”, a wobbly robot on wheels that was able to move around rooms picking up and stacking boxes. It was the first autonomous robot.

Numerous refinements to the artificial intelligence control programs were made over the years. Each tiny improvement took a lot of effort. A program called STRIPS (abbreviation of STanford Research Institute Problem Solver) was one of the earliest robot-planning programs. It was developed by R. E. Fikes and N. J. Nilsson during 1971 and 1972. STRIPS was attached to the robot SHAKEY, which had simple vision capabilities as well as tactile sensors. It took the lead over GPS for a while. STRIPS and GPS were similar in that they both used means-ends analysis. The main difference between them was in their control strategy for selecting operators. GPS used an operator-difference table; STRIPS used theorem proving. At the same time C. Hewit from MIT presented the system called PLANNER.

Then along came Terry Winograd’s SHRDLU (a nonsense name, it has no meaning.) SHRDLU developed in 1969 at Stanford University was more than an incremental advance – it was a considerable advance. It was a pioneering natural language processing system that let humans interrogate the robot in a blocks world. It could manipulate coloured building blocks based on a set of instructions and was programmed to ask questions for clarification of commands. SHRDLU was part of the micro worlds, also called blocks worlds, project, which consisted of research and programming in small worlds (such as with a limited number of geometric shapes). The MIT researchers headed by Marvin Minsky, demonstrated that when confined to a small subject matter, computer programs could solve spatial problems and logic problems. The result of these programs was a refinement in language comprehension and logic.

In 1969, Marvin Minsky and Seymour Papert published a book called Perceptrons: An Introduction to Computational Geometry, which emphasized the limitations of the perceptron and criticised claims on its usefulness. In effect, this killed funding for neural network research for 12-15 years. Minsky and Papert demonstrated there that the perceptron could not solve so-called linearly inseparable problem, the simplest example of which is XOR also called exclusive-or function.

Partly because of the perceptron critique, the 1970s saw the advent of the expert system belonging to the symbolic artificial intelligence. Expert systems predict the probability of a solution under set conditions. The programs for expert systems use a lot of IF THEN statements and heuristics. They search through the space of possible solutions, and are guided by rule-of-thumb principles. The modern term for the latter idea is “heuristic search”, a heuristic being any rule-of-thumb principle that cuts down the amount of searching required in order to find the solution to a problem. Programming using heuristics is a major part of modern artificial intelligence, as is the area now known as machine learning. Over the course of ten years, expert systems had been introduced to forecast the stock market, aiding doctors with the ability to diagnose disease, and instruct miners to promising mineral locations.

During the 1970s many new methods in the development of artificial intelligence were tested, notably Minsky’s frames theory in 1975. A frame is a data structure for representing a stereotyped situation, for example, a living room or birthday party. It includes information about how to use it, what to expect, what to do if expectations are not met. It can be thought of as a network of nodes and relations. The frames theory adopted a structured approach, collecting together facts about particular object and event types, and arranging the types into a large taxonomic hierarchy analogous to a biological taxonomy.

British psychologist David Marr pioneered the mathematical analysis of vision. In his research, he studied such questions as how depth is perceived, how motion is perceived, and what defines boundaries in the visual field. He claimed that to process nearly infinite combinations, the brain must operate on visual information in certain mathematical ways and have the ability to be finely tuned on many different scales. He intensively studied the fly visual system, working out many of its details. His work has been incredibly important, not only in the understanding of human vision, but in creating the possibility of machine vision.

In 1973 Alain Colmerauer presented an outline of PROLOG, proposed by him already in 1967, a logic-programming language for expert systems. The language has become enormously popular, especially in Europe and Japan, and has been adopted for use in the Japanese Fifth Generation Program announced in 1981. It was a 10-year plan to build intelligent computers running PROLOG in much the same way that ordinary computers run machine code. The idea was that with the ability to make millions of inferences per second, computers would be able to take advantage of vast stores of rules. The project proposed to achieve full-scale natural language understanding, among other ambitious goals. Many of those goals have not been achieved yet, but the project helped to make a qualitative leap in computer development.

The first expert systems were DENDRAL and MYCIN. DENDRAL took ten years, from 1965 to 1975, to develop at Stanford University under a team headed by Edward Feigenbaum and Robert Lindsay. Feigenbaum is today considered the guru of expert systems. DENDRAL was designed to help chemists determine the structure of molecules from spectroscopic data, a problem previously done painstakingly by trial and error and relying on the expertise of the chemist. DENDRAL, programmed in LISP, worked very well until the number of rules and logic grew beyond a certain point of complexity, when it became very difficult to add new rules or make adjustments to existing ones while maintaining stability. The system essentially became chaotic, with a small change in initial conditions having large and unforeseen impacts down the line. Nevertheless, DENDRAL has been routinely used since 1969 via computer net, which makes it the expert system used for the longest time.

INTERNIST, an internal medicine expert system that is now called CADUCEUS, was developed at the University of Pittsburgh in the early 1970s by Harry People and Jack Myers to analyse hundreds of clinical problems. The program begins by asking the physician to describe the patient’s symptoms and medical history. Each symptom is then analysed to determine the disease. Written in LISP, the system addresses some 500 diseases, 25 percent of which are within the realm of internal medicine.

MYCIN, designed to diagnose infectious blood diseases, went some way toward overcoming DENDRAL’s shortcoming by separating the rules governing when to apply the rules from the knowledge base, which is itself a list of IF THEN rules. MYCIN problem domain was selection of antibiotics for patients with serious infections. Medical decision making, particularly in clinical medicine, is regarded as an “art form” rather than a “scientific discipline”: this knowledge must be systemised for practical day-to-day use and for teaching and learning clinical medicine. Its target users were physicians and possibly medical students and paramedics. The originator of MYCIN was Edward Shortliffe from the Department of Medicine and Computer Science at Stanford University School of Medicine in California who created it in 1972. EMYCIN is a problem-independent version of MYCIN, which is still used in American medicine practice.

DENDRAL was an all-or-nothing system. It would only provide an answer when it was 100% certain of the correctness of its response. As we all know, in daily life, few things are certain. This is certainly true of medicine, a profession, which, for all its high-tech gadgetry, still relies heavily on physician intuition or heuristic decisions. MYCIN, appropriately for a medical expert, incorporated probability into its decisions. Its answers would not be straight Yes or No, but “There’s a 63% chance the patient has X infection”. As I have already said, the fundamental advance represented by MYCIN over DENDRAL was that its knowledge base was separated from the control structure. All modern expert systems use this two-part structure, which facilitated the development of expert system “shells”, a control structure plus empty slots into which one could feed expert knowledge from any domain. The primary difference among the large number of modern expert systems is not how they reason, they all reason in pretty much the same way. The difference, rather, is in what they know. One expert system may know about infectious diseases, another about oil-bearing rock formations. The hardest part of creating a new expert system is transferring knowledge from a human expert into the system’s knowledge base. In education, we call this “teaching”. In artificial intelligence, it’s known as “knowledge engineering”.

Knowledge engineering got its start with TEIRESIAS, a program developed in 1976 by Randall Davis that helped the human expert spot gaps and inconsistencies in the knowledge being transferred to the system. DENDRAL and MYCIN were terrific advances for artificial intelligence in an academic and scientific sense, but they were not ready for prime time in the real world of chemists or doctors. They were not big enough and not powerful enough.

In 1975 the Carnegie Mellon University developed HEARSAY, a system for speech understanding. It accepts a speech wave as input and produces a list of hypotheses about what was enunciated as well as a database query based on the best guess of its meaning. The system possessed a 1,000-word vocabulary and a 75 percent accuracy rate in interpreting human speech. The system also demonstrated the clear superiority of the heuristic method over the algorithmic method in dealing with speech understanding.

A commercial expert system, PROSPECTOR was developed in the late 1970s at Stanford Research Institute International (SRI) by a team of prominent scientists including Richard Duda, Peter Hart, and P. Barnett. The LISP-based system locates valuable ore deposits and produces maps and geological site evaluations. The team worked with a number of mineral experts to fashion the system’s five models. Once the initial data is entered into the system, PROSPECTOR selects the model that best explains the data. This system has gained popularity by finding a 100 million $ molybdenum deposit in Washington during the first six weeks of its usage.

PUFF was developed at Stanford in 1980 to interpret readings from respiratory tests given to patients in a pulminary (lung) function lab. The system interfaces directly with the lab’s lung machines and measures the capacity of the patient’s lungs and their ability to get oxygen in and carbon dioxide out on a regular basis. PUFF relies on 64 rules stored in the knowledge base to interpret the test data. The system’s accuracy rate is about 93 percent.

The program, that counts as the first real-world application of expert system technology, was Digital Equipment Corporation (DEC)’s XCON – “Expert Configurer”. XCON, originally called R1, introduced in 1982 by John McDermott of Carnegie Mellon University, helped DEC salespeople decide what configuration of hardware components was best for a given customer’s needs (DEC sold “clusters” of minicomputers that could be configured in hundreds of different ways). XCON then helped DEC production engineers put the components together. The system simply took a customer’s order as input and drew a set of diagrams that will be used by the assemblers to build a computer. XCON was credited with making DEC profitable. But like DENDRAL and MYCIN before it, XCON too would eventually become bogged down as it grew in size and complexity. There were needed other approaches in artificial intelligence.

In 1974 in his Harvard doctoral thesis Paul Werbos discovered a learning rule for a multilayer neural net called backpropagation of errors or the generalised delta rule. Although his work had not gained wide publicity, this learning rule was independently rediscovered by people like David Parker in 1985 and Yann Le Cun in 1988. The basic elements of the theory can be traced back to the work of Bryson and Ho in 1969. Parker’s work was refined and publicised in 1986 by psychologists David Rumelhart, of the University of California at San Diego, and James McClelland, of Carnegie-Mellon University. The discovery played a major role in the re-emergence of neural networks in the 1980s, because it provided the direction how to solve tasks that were declared as unsolvable by neural nets by Minsky and Papert in 1969.

In 1980 American philosopher John Searle attempted to cast doubt upon whether artificial intelligence can be viewed as Good Old-Fashioned artificial intelligence, also called Strong Artificial Intelligence, in his “Chinese room” thought experiment. The Strong Artificial Intelligence says approximately the following things: A computer programmed in the right way really is a mind, that is, it can understand and have other cognitive states, which means that the programs actually explain human cognition. Opposing to the Strong Artificial Intelligence there is the Weak Artificial Intelligence saying that the computer is a useful tool for the study of the human mind, and it helps us formulate and test our hypotheses in a more precise, rigorous way. Other definition that distinguishes Weak AI from Strong AI is that the assertion that machines can be made to act as if they were intelligent is called the Weak AI position, while the Strong AI position claims that machines that act intelligently have real, conscious mind. Searle has no objection to Weak Artificial Intelligence, only to Strong Artificial Intelligence. To put it another way, Searle has no objection to the use of computers to simulate intelligence; what he objects to is the notion that intelligence is nothing but manipulating symbols. The Chinese room experiment is about a man sitting in a room with Chinese symbols and rules for composing meaningful sentences from these symbols. The man in the room doesn’t know Chinese, but he knows the language used for the description of the rules. He can’t get the meaning of the Chinese symbols from these rules, but he is able to compose right answers to the questions in Chinese that someone outside the room sends into the room. This man could pass the Turing test without knowing what was the talk about. Searle wanted to show by this thought experiment that Strong Artificial Intelligence and cognitive sciences cannot examine the inner states of mind, because these are accessible only via introspection. Margaret A. Boden, Professor of Philosophy and Psychology at the University of Sussex, has remarked to this that we should regard the Chinese room as a whole, because the emergence effect has caused that all the components that do not know Chinese have built a system that “knows” Chinese.

In 1982 John Hopfield of the California Institute of Technology together with David Tank, a researcher at AT&T, introduced model of neural nets, which came to be known as Hopfield Networks, which again revived research in the neural network area. The Hopfield neural network is a simple artificial network, which is able to store certain memories or patterns in a manner rather similar to the brain – the full pattern can be recovered if the network is presented with only partial information.

In 1982 Teuvo Kohonen, of Helsinki University of Technology, developed self-organising feature maps that use a topological structure for the cluster units. These nets have been applied to speech recognition for Finnish and Japanese words in 1988, the solution of the “Travelling Salesman Problem” also in 1988, and musical composition in 1989.

In 1986 a team at Johns Hopkins University led by Terrence Sejnowski trained a VAX computer in the rules of phonetics, using a multilayer perceptron network called NETtalk. In just twelve hours of learning the machine was able to read and translate text patterns into sounds with a 95% success rate. The team noted that the machine sounded uncannily like a child learning to read aloud while it was training. NETtalk used the back-propagation learning rule.

Applications using nets like NETtalk can be found in virtually every field that uses neural nets for problems, that involve mapping a given set of input to a specified set of target outputs. As is the case with most neural networks, the aim is to train the net to achieve a balance between the ability to respond correctly to the input patterns that are used for training or memorisation and the ability to give reasonable good responses to input that is similar, but not identical, to that used in training data, which is called generalisation. Neural nets are now used as a tool for solving a wide variety of problems like speech recognition, optical character recognition (OCR), knowledge bases, bomb detectors, data visualisation, financial market predictions, medical diagnoses, and much, much more.

In 1996 IBM Computer Deep Blue defeated World Chess Champion, Gary Kasparov. One persistent “problem” is that as soon as an artificial intelligence technique truly succeeds, in the minds of many it ceases to be artificial intelligence, becoming something else entirely. For example, when Deep Blue defeated Kasparov, there were many who said Deep Blue wasn’t artificial intelligence, since after all it was just a brute force parallel minimax search. Deep Blue was an IBM RISC System/6000 Scalable Power Parallel System. It had 32 processors dedicated to calculation each processor connected to 8 chess specific processors. It calculated 200.000.000 moves per second.

The recent development of artificial intelligence, a computerised toddler named HAL, after the self-aware machine created by Arthur C. Clarke in 2001: A Space Odyssey, may be the first form of artificial intelligence to understand human language, according to its inventors. Researchers at Artificial Intelligence Enterprises (Ai), an Israeli company, claim that HAL has developed the linguistic abilities of a child of 15 months, making it the first to satisfy a standard test of a true mechanical mind. The HAL software, which is compact enough to run on a laptop computer, learns in similar fashion to children. It is capable of speaking a few simple words, and may eventually develop the language capacity of a child aged five. Using “learning algorithms” and children’s stories, scientists at Ai claim to have created a computer that can teach itself to “speak”. The researchers, led by Chief Scientist Jason Hutchens, developed a small program that uses no input other than typed-in words in natural everyday language to teach the computer to understand and communicate via human speech. HAL is trained by having a single human “carer” type in children's stories. HAL then responds to questions in simple sentences and the carer responds back as a parent would. The only motivation in the program is described as a “built-in desire for positive reinforcement from the carer”. After a training session the carer analyses HAL’s responses and gives feedback to the algorithm designers, who make new algorithms, which are then fed back into HAL, and the cycle continues. As the algorithms improve, this kind of training could take only days, instead of the years it takes human babies to learn a language. Ai’s approach is different from other speech programs, which use statistical and grammatical rules linked to giant vocabulary lists. This should allow HAL to respond to commands in more normal language, instead of the rigid syntax and specific command words necessary for existing voice command programs.

In the end of my presentation let me explain some artificial intelligence terms. One of them is soft computing. Soft computing, according to the definition by the inventor of fuzzy logic Lotfi Zadeh, differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for soft computing is the human mind. The guiding principle of soft computing is to exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low solution cost. At this juncture, the principal constituents of soft computing (SC) are fuzzy logic (FL), neural network theory (NN) and probabilistic reasoning (PR), with the latter subsuming belief networks, genetic algorithms, chaos theory and parts of learning theory. What is important to note is that SC is not a melange of FL, NN and PR. It is rather a partnership in which each of the partners contributes a distinct methodology for addressing problems in its domain. In this perspective, the principal contributions of FL, NN and PR are complementary rather than competitive.

An agent is a software system that engages and helps users. More generally, an agent is just something that perceives and acts. An example of an agent, that you probably know, is Microsoft Paperclip. The paperclip in Microsoft World is an example of a simple and sometimes annoying agent that monitors the user’s input and offers assistance when a common task is recognised. The dynamic and complex nature of both information and applications require software not merely respond to user’s requests but also intelligently anticipate, adapt, and help the user. Such systems are called intelligent software agents. The study of agents is as old as the field of artificial intelligence. John McCarthy, one of artificial intelligence’s founders, conceived the idea of an intelligent software agent in the mid 1950s. The term “agent” was coined by Oliver Selfridge a few years later.

Between the 60s and 70s, Dr. John Holland from MIT, along with his students and colleagues, laid the foundation for an area of artificial intelligence research that is now called genetic algorithms. Genetic algorithms are not a separate discipline under artificial intelligence research, but are considered part of evolutionary computation. The field of evolutionary computation is mainly made up of evolution strategies, evolutionary programming and genetic algorithms. Research in this field is based on the idea that evolution could be used as an optimisation tool for engineering problems. The common thread in all evolutionary systems is the belief that it is possible to evolve a population of candidate solutions to a given problem, using operators inspired by natural genetic variation and natural selection. John Holland’s original intent was not to design algorithms that solve specific problems, as was the mindset of the day, but instead to study the process of adaptation. Genetic algorithms originated in the work of IBM researcher R. M. Friedberg (1958), who attempted to produce learning by mutatuing small FORTRAN programs. Since most mutations to the programs produced inoperative code, little progress was made. John Holland (1975) reinvigorated the field by using bit-string representations of agents such that any possible string represented a functioning agent. John Koza (1992) has championed more complex representations of agents coupled with mutation and mating techniques that pay careful attention to the syntax of the representation language. Current research appears in the annual Conference of Evolutionary Programming.

Genetic algorithms, also called machine evolution, are a sub-field of so-called artificial life or a-life. One of the most interesting projects of this kind is Tierra. Tierra was started in 1990 by American biologist Thomas Ray. Originally run on a single, massively parallel Connection Machine, the program is now being run on several computers linked by the Internet, giving it a much larger and more diverse environment in which to evolve. The researchers hope that Tierrans will evolve into commercially harvestable software. The Tierra C source code creates a virtual computer and its Darwinian operating system, whose architecture has been designed in such a way that the executable machine codes are evolvable. This means that the machine code can be mutated (by flipping bits at random) or recombined (by swapping segments of code between algorithms), and the resulting code remains functional enough of the time for natural (or presumably artificial) selection to be able to improve the code over time.

PAGE
4

